The Development and Validation of a High throughput Cell-Based **Acetylcholinesterase Assay Using Mouse N2A**

Samuel Solomon, Shuaizhang Li, Ruili Huang, Menghang Xia National Center for Advancing Translational Sciences (NCATS), National Institute of Health, Rockville, MD

Principle and Method

Optimization and Results

Acetylcholinesterase (AChE) resides in chemical synapses where it can hydrolyze acetylcholine: a neurotransmitter associated with muscle movement, cognition, and other neurobiological processes. While AChE inhibitors have been used to treat Alzheimer's disease, glaucoma, and myasthenia gravis, excess amounts of the inhibitor can lead to toxicological effects such as gastrointestinal upset, vomiting, and muscular paralysis. Nevertheless, many compounds have unknown AChE inhibitory effects. In order to counteract this problem, our study developed a cell-based assay using mouse neuro2a cells to screen for AChE inhibitors in a high-throughput screening fashion. Our cellbased assay was optimized and miniaturized into a 1536-well format using the Ellman method, in which AChE activity was determined by measuring the absorption intensity of the DTNB-thiocholine adduct that results when AChE hydrolyzes acetylthiocholine.

Abstract

The assay was then validated against a cherry-picked 1247 compounds that were identified from the 10 k library using human SH-SY5Y cells. Many compounds show inhibitory effects for AChE in both cell lines, such as Acid Red 337. And there are also some compounds that only show effects in one of the cell lines, such as Arbutin. Overall, this assay will aid in the identification of chemical compounds that inhibit the activity of AChE in certain cell lines.

METHOD								
Step	Parameter	Value	Description					
1	Plate Cells	4 µL	3000 cells/well using a MultiDrop					
2	Incubation	18 hr	Incubation at 37 °C					
3	Compound	23 nL	Pintool transfer of control - compounds					
4	Incubation	60 min	Incubation at 37 °C					
5	Reagent	4 µL	Addition with BioRAPTR					
6	Incubation	40 min	Incubation at room temperature					
7	Readout	Envision	Ex: 405 Absorbance					

	2000 cells	3000 cells	4000 cells			
HillSlope	-1.808	-2.025	-2.026			
IC50	3.767e-009	3.903e-009	4.354e-009			
1C)						

A	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Chlorpyrifos	cv	S/B	Z' factor
C D E	← → <u>Chlorpyrifos-oxon</u> , start at 1 <u>mM</u> (2.88 µM; final concentrati	ion), 1:2 dilution, 2 replicates	2000 cells	0.070742	2.810946	0.55793
G H	→ BW284C51, start at 10 mM (28.8 µM; final concentration), 1:2 dilution, 2 replicates	3000 cells	0.036339	3.674934	0.7880
J K L	← → <u>Chlorpyrifos-oxon</u> , 1 <u>mM</u> (2.88 µM; final concentratio	n)	4000 cells	0.045609	4.056431	0.7836
N O P Q R		Assay volume=8 µL				
S T U			BW284c51	сѵ	S/B	Z' factor
v w x			2000 cells	0.070742	2.620679	0.55489
Z AJ Al			3000 cells	0.036339	3.532044	0.80186
AI AI A			4000 cells	0.045609	3.856086	0.76343

Figure 1:

1B)

1A: Dose response curves for the positive control compounds **1B:** Assay control plate 1C: CV, Z' factor, and S/B values for 2000, 3000, and 4000 cells/well are listed in Table 1C. The

CV values shown are the average values for the plates, excluding the top concentration points

Positive Controls

Comparison Between Cell Lines

The AmpliteTM Colorimetric Acetylcholinesterase Assay Kit (11400) was purchased from AAT Bioquest. Compounds used in this study were purchased from Sigma-Aldrich (St. Louis, MO).

Conclusion

1)

-8.75 -8.50 -8.25 -8.00 -7.75 -7.50 -7.25 -7.00 Concentration

Figure 2:

2A: Dose response curves for Chlorpyrifos oxon (positive control). **2B:** Dose response curves for BW284c51 (positive control).

screening AChE inhibitors.

Li, S., Huang, R., Solomon, S., Liu, Y., Zhao, B., Santillo, M. F. and Xia, M. Identification of acetylcholinesterase inhibitors using homogenous cell-based assays in quantitative highthroughput screening platforms. Biotechnol. J., 2017.